# РОССИЙСКАЯ ФЕДЕРАЦИЯ

## ООО ЗАВОД «ПРОМПРИБОР»

КОД ТН ВЭД ТС: 9028 30 110 0









Счетчики электрической энергии трехфазные многофункциональные KBAHT ST 2000-10 исполнение корпуса С

> РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ВЛСТ 417 00 000 РЭ

Декларация о соответствии ТС N RU Д-RU.MM04.B.07281 Свидетельство об утверждении типа RU.C. 34.004.A № 59406 Государственный реестр средств измерений № 61237-15

Настоящее руководство по эксплуатации содержит сведения, необходимые для правильной эксплуатации счетчиков электрической энергии трехфазных многофункциональных КВАНТ ST 2000-10 (в дальнейшем – счетчиков) и распространяется на счетчики в исполнениях С.

К работе со счетчиками допускаются лица, специально обученные для работы с напряжением до 1000 В, и изучившие настоящее руководство по эксплуатации.

По безопасности эксплуатации счетчики удовлетворяют требованиям ГОСТ 22261 и ГОСТ Р 51350. По способу защиты человека от поражения электрическим током счетчики соответствуют классу II по ГОСТ Р 51350. В части остальных требований счётчики соответствуют требованиям ГОСТ 31818.11-2012, ГОСТ 31819.21-2012, ГОСТ 31819.22-2012 и ГОСТ 31819.23-2012.

Сопротивление изоляции между корпусом и электрическими цепями не менее:

 $20~\rm MOм$  – при температуре окружающего воздуха от минус  $40~\rm до~70^{\circ}C$  и относительной влажность воздуха – до 98%

7 МОм — при температуре окружающего воздуха (40  $\pm$  2)°C при относительной влажности воздуха 93 %.

#### 1 ОПИСАНИЕ И РАБОТА

#### 1.1 Назначение

Счетчики электрической энергии трехфазные многофункциональные КВАНТ ST 2000-10 предназначены для измерения активной и реактивной электрической энергии прямого и обратного направления по дифференцированным во времени тарифам в трехфазных сетях переменного тока промышленной частоты.

Счетчики могут применяться как автономно, так и в составе автоматизированных информационно-измерительных систем коммерческого учета (АИИС КУЭ) и технического учета электроэнергии, диспетчерского управления (АСДУ).

# 1.2 Технические и метрологические характеристики

# 1.2.1 Основные характеристики

Основные метрологические и технические характеристики приведены в таблице 1.1.

Таблица 1.1 – Метрологические и технические характеристики счетчиков

| TY                                              |                            |
|-------------------------------------------------|----------------------------|
| Наименование характеристики                     | Значение параметра         |
| Номинальное фазное напряжение, В                | 220; 230                   |
| Базовый или номинальный ток, А                  | 5; 10                      |
| Максимальный ток, А                             | 10; 50; 60; 80; 100        |
| Диапазон входных сигналов:                      |                            |
| сила тока                                       | $0.05I_{6\ (HOM)}I_{MAKC}$ |
| напряжение                                      | $(0,751,15) U_{HOM}$       |
| коэффициент мощности                            | 0,8 (емкостная)1,00,5      |
|                                                 | (индуктивная)              |
| Диапазон рабочих температур окружающего         | от минус 40 до 70          |
| воздуха, °С                                     |                            |
| Относительная влажность                         | до 98% при 25°C            |
| Рабочий диапазон изменения частоты              | $50 \pm 7,5$               |
| измерительной сети счетчика, Гц                 |                            |
| Диапазон значений постоянной счетчика по        | от 800 до 8000             |
| активной электрической энергии, имп./(кВт-ч)    |                            |
| Диапазон значений постоянной счетчика по        | от 800 до 8000             |
| реактивной электрической энергии, имп./(квар·ч) |                            |
| Пределы основной абсолютной погрешности         | ± 0,5                      |
| часов, с/сут                                    |                            |
| Пределы основной абсолютной погрешности         | ±1                         |
| часов при отключенном питании счетчика, с/сут   |                            |
| Пределы дополнительной температурной            | ± 0,15                     |
| погрешности часов счетчика, с/(сут·°С)          |                            |
| Разрешающая способность счетного механизма      | 0,01                       |
| отсчетного устройства, кВт-ч, не менее:         |                            |
| Полная мощность, потребляемая каждой цепью      | не более 0,5 В А           |
| тока при базовом токе, нормальной температуре и |                            |
| номинальной частоте                             |                            |
| Полная (активная) мощность, потребляемая        | не более 10 B·A (2 Вт)     |
| каждой цепью напряжения при номинальном         | ,                          |
| значении напряжения, нормальной температуре и   |                            |
| номинальной частоте                             |                            |
| Длительность хранения информации при            | 30                         |
| отключении питания, не менее, лет               |                            |
| Срок службы батареи, не менее, лет              | 16                         |
| Замена батареи                                  | с нарушением пломбы        |
| 1                                               | поверителя                 |
| Число тарифов, не менее                         | 4                          |
| /                                               | l .                        |

Таблица 1.1. Продолжение

| Число временных зон, не менее                      | 12                      |
|----------------------------------------------------|-------------------------|
| Наименование характеристики                        | Значение параметра      |
| Глубина хранения значений электрической энергии на | 36 месяца               |
| начало месяца, не менее:                           |                         |
| Глубина хранения значений электрической энергии на | 128 суток               |
| начало суток, не менее:                            | -                       |
| Глубина хранения значений электрической энергии на | 128 суток               |
| начало интервала 30 минут, не менее                |                         |
| Глубина хранения значений электрической энергии,   | 128 суток               |
| потребленной за интервал 30 минут, не менее        |                         |
| Интервал усреднения мощности для фиксации          | 30 минут <sup>1)</sup>  |
| профиля нагрузки                                   |                         |
| Глубина хранения профиля нагрузки при интервале    | 128 суток <sup>2)</sup> |
| усреднения 30 минут, не менее:                     |                         |
| Количество записей в журнале событий, не менее:    | 1000                    |
| Количество оптических испытательных выходов с      | 2                       |
| параметрами по ГОСТ 31818.11-2012:                 |                         |
| Скорость обмена информацией по интерфейсам, бит/с  | 9600                    |
| Степень защиты от пыли и влаги по ГОСТ 14254-96    | IP64                    |
| Срок службы счетчика, не менее, лет                | 30                      |
| Средняя наработка на отказ, не менее, ч            | 200000                  |
|                                                    |                         |

 $^{1)}$  По требованию заказчика возможна реализация настраиваемого интервала усреднения мощности из ряда: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 минут.

 $^{5)}$  Минимальная глубина хранения профиля нагрузки при других значениях интервала усреднения может быть рассчитана по формуле  $D_{\text{\tiny MMR}} = \frac{I_{\text{\tiny mex}}}{30} \cdot D_{30}$ ,

где  $I_{\mathit{mex}}$  – текущий интервал усреднения мощности, минут;

 $D_{30}$  — глубина хранения профиля нагрузки при интервале усреднения 30 минут, суток.

Габаритные размеры и масса счетчиков приведены в таблице 1.2.

Таблица 1.2 – Габаритные размеры и масса счетчиков

| Обозначение исполнения    | Габаритные размеры (длина;    | Масса, кг, |
|---------------------------|-------------------------------|------------|
| счетчика                  | ширина; высота), мм, не более | не более   |
| KBAHT ST 2000-10-C-x-x-xx | 250; 250; 120                 | 2,5        |

Счетчики начинают нормально функционировать не позднее чем через 5 с после того, как к клеммам будет приложено номинальное напряжение.

При отсутствии тока в последовательной цепи счетчики не измеряют электроэнергию (не имеют самохода).

# 1.2.2 Классы точности и погрешности измерений

Классы точности по ГОСТ 31818.11-2012, ГОСТ 31819.21-2012, ГОСТ 31819.22-2012, ГОСТ 31819.23-2012, в зависимости от исполнения, указаны в таблице 1.3.

Таблица 1.3 – Классы точности счетчиков

| OScariovania varia manua avarinina | Класс точности при измерении энергии |            |  |
|------------------------------------|--------------------------------------|------------|--|
| Обозначение исполнения счетчика    | активной                             | реактивной |  |
| KBAHT ST2000-10-x-x-1/1-xx         | 1                                    | 1          |  |
| KBAHT ST2000-10-x-x-1/2-xx         | 1                                    | 2          |  |
| KBAHT ST2000-10-x-x-0,5S/1-xx      | 0,5S                                 | 1          |  |
| KBAHT ST2000-10-x-x-0,5S/2-xx      | 0,5S                                 | 2          |  |
| KBAHT ST2000-10-x-x-0,2S/1-xx      | 0,2S                                 | 1          |  |
| KBAHT ST2000-10-x-x-0,2S/2-xx      | 0,2S                                 | 2          |  |

Максимальные значения стартовых токов счетчиков в зависимости от класса точности приведены в таблице 1.4.

Таблица 1.4 – Максимальные значения стартовых токов счетчиков

|                           | Класс точности счётчика |           |                          |                     |             |
|---------------------------|-------------------------|-----------|--------------------------|---------------------|-------------|
| Тип включения<br>счётчика | 1                       | 0,2S      | 0,5S                     | 1                   | 2           |
|                           | ГОСТ                    | ГОСТ      | ГОСТ                     | ГОСТ                | ГОСТ        |
|                           | 31819.21-               | 31819.22- | 31819.22-                | 31819.23-           | 31819.23-   |
|                           | 2012                    | 2012      | 2012                     | 2012                | 2012        |
| Непосредственное          | $0,0025 I_{\delta}$     | 0,00      | )1 <i>I</i> <sub>6</sub> | $0,0025 I_{\delta}$ | $0,005 I_6$ |

Пределы относительных погрешностей при измерении напряжения, положительного и отрицательного отклонения напряжения, тока, частоты, отклонения частоты, мощности, коэффициента мощности указаны в таблице 1.5.

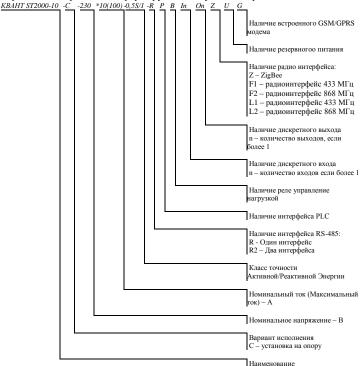
Таблица 1.5 – Пределы относительной погрешности измерений параметров электрической сети

| Предел относительной погрешности измерений               |       |
|----------------------------------------------------------|-------|
| Фазного напряжения, %                                    | ±0,4  |
| Положительного и отрицательного отклонения напряжения, % | ±0,4  |
| Фазного тока, %                                          | ±1    |
| Частоты, %                                               | ±0,08 |
| Отклонения частоты, %                                    | ±0,08 |
| Активной мгновенной мощности, %                          | ±1    |
| Реактивной мгновенной мощности, %                        | ±1    |
| Полной мгновенной мощности, %                            | ±1    |
| Коэффициента мощности, %                                 | ±1    |

**Примечание** – погрешности измерения напряжения, положительного и отрицательного отклонения напряжения, тока, частоты, отклонения частоты, мощности, коэффициента мощности нормируются для следующих значений вхолных сигналов:

- напряжение (0,75...1,2)  $U_{HOM}$ ;
- $\text{TOK} 0.05I_{\delta (HOM)}...I_{MAKC}$ ;
- частота измерительной сети (42,5...57,5) Гц;
- температура окружающего воздуха от минус 40 до 70 °C.

## 1.2.3 Измеряемые и вычисляемые параметры


Счетчики обеспечивают учет:

- текущего времени и даты;
- количества электрической энергии нарастающим итогом суммарно независимо от тарифного расписания;
- количества электрической энергии нарастающим итогом суммарно и раздельно по действующим тарифам;
- количества электрической энергии нарастающим итогом суммарно и раздельно по действующим тарифам на начало месяца;
- количества электрической энергии нарастающим итогом суммарно и раздельно по действующим тарифам на начало суток;
- профиля мощности, усредненной на интервале 30 минут (или настраиваемом из ряда: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 минут);
- количества электрической энергии нарастающим итогом суммарно и раздельно по действующим тарифам на начало интервала 30 или 60 минут (только при установленном интервале усреднения мощности 30 или 60 минут);
- количества электрической энергии, потребленной за интервал 30 минут (только при установленном интервале усреднения мощности 30 минут).
- Счетчики дополнительно обеспечивают измерение следующих параметров:
  - фазных напряжений;
- положительного и отрицательного отклонения напряжения (по ГОСТ 32144-2013, ГОСТ 30804.4.30-2013, класс S);
  - фазных токов;
  - частоты сети;
- отклонения частоты (по ГОСТ 32144-2013, ГОСТ 30804.4.30-2013, класс S);
  - активной мгновенной мощности по каждой фазе;
  - реактивной мгновенной мощности по каждой фазе;
  - полной мгновенной мощности по каждой фазе;
  - коэффициентов мощности по каждой фазе.

Все указанные данные доступны для считывания по имеющемуся интерфейсу

#### 1.3 Состав счетчика

Счетчик выпускается в нескольких модификациях. Модификация определяется при заказе и формируется следующим образом:



Примечание – При отсутствии опции отсутствует и соответствующий символ в условном обозначении

Пример записи модификаций:

ST2000-10-C-230\*10(100)-1/1-PBZ - Счетчик электрической энергии трехфазный для установки на опору с интерфейсом PLC, реле управления нагрузкой и радио интерфейсом ZigBee.

В составе счетчиков ЖК-дисплей отсутствует. Счетчик представляет собой измерительный блок, выполняющий все функции многотарифного счетчика. Счетчик устанавливается на опоре линии электропередачи с подключением к отводящим силовым проводам, по которым ток поступает к потребителю. При необходимости визуального считывания информации может использоваться дополнительное дистанционное индикаторное устройство, устанавливаемое в любом удобном для потребителя месте и выполняющее функции индикации показаний (поставляется по отдельному заказу). Связь со счетчиком осуществляется по радиоканалу.

Внешние виды счетчика и индикаторного устройства с габаритными и установочными размерами показаны в приложении А.

# 1.4 Устройство и работа

### 1.4.1 Принцип действия

Принцип действия счетчиков основан на измерении входных сигналов напряжения и тока с помощью аналого-цифровых преобразователей и их перемножении с последующей обработкой с помощью специализированного контроллера.

#### 1.4.2 Основные элементы

Конструктивно счетчики состоят из корпуса и крышки клеммной колодки. В корпусе расположены печатные платы, клеммная колодка, измерительные элементы. Клеммная крышка при опломбировании предотвращает доступ к винтам клеммной колодки и силовым тоководам.

Счетчики имеют в своем составе измерительные элементы – датчики тока (шунты или трансформаторы тока, в зависимости от исполнения), микроконтроллер, энергонезависимую память данных, встроенные часы, позволяющие вести учет электрической энергии по тарифным зонам суток, выполненные по ГОСТ Р МЭК 61038-2001, оптическое испытательное выходное устройство по ГОСТ 31818.11-2012 для поверки, а так же интерфейс для подключения к системам автоматизированного учета потребленной электроэнергии, ЖК-дисплей для просмотра измеряемой информации. Счетчик имеет в своем составе оптический порт, который выполнен по ГОСТ Р МЭК 61107-2001).

Зажимы для подсоединения счетчиков к сети, интерфейсов, дискретных входов и выходов закрываются пластмассовой крышкой.

Счетчики имеют встроенные элементы для контроля вскрытия клеммной крышки и корпуса счетчика. Время и дата вскрытия фиксируются в журнале событий. Благодаря встроенному элементу питания, фиксация в журнале событий производится как при поданном сетевом напряжении, так и при его отсутствии.

# 1.4.3 Просмотр информации

Поскольку в составе счетчиков ЖК-дисплей отсутствует, то при необходимости визуального считывания информации может использоваться

дополнительное дистанционное индикаторное устройство. Порядок работы с индикаторным устройством подробно описан в приложении В.

## 1.4.4 Реле управления нагрузкой

Счетчики, у которых в условном обозначении присутствует символ «В», оснащены встроенным контактором (реле управления нагрузкой) и дополнительно позволяют:

- организовать отпуск потребителю предварительно оплаченного количества электроэнергии (с отключением нагрузки при его превышении и подключением нагрузки после внесения оплаты);
- отключать нагрузку при превышении потребляемой мощности выше установленных лимитов;
- подключать нагрузку при уменьшении потребляемой мощности ниже установленных лимитов.

Коммутация встроенного контактора при подключении нагрузки происходит после подачи соответствующей команды по интерфейсу и нажатии на кнопку, расположенную на лицевой панели счетчика (по умолчанию), или только после подачи команды по интерфейсу (опционально).

# 1.4.5 Внешние интерфейсы

Счетчики, в зависимости от исполнения, могут иметь один или два интерфейса удаленного доступа.

Для активации интерфейсов в счетчике необходимо:

- для активизации оптического порта необходимо снять клеммную крышку счетчика,
- для активизации радиоинтерфейса необходимо, чтобы клеммная крышка счетчика была установлена на корпус счетчика.

Обмен информацией с внешними устройствами обработки данных осуществляется по имеющемуся интерфейсу (в зависимости от исполнения в соответствии со структурой условного обозначения). Скорость обмена по интерфейсу любого типа фиксированная — 9600 бит/с. Формула обмена — 8 бит данных, без контроля четности, 1 стоповый бит. Обмен информацией с ПЭВМ производится с помощью программы опроса и программирования счетчиков.

Счетчики могут одновременно оснащаться интерфейсами RF и PLC для дистанционной передачи данных о потреблении электрической энергии, при этом интерфейсы работают в паре, что обеспечивает резервирование каналов связи для автоматизированного сбора данных.

Счетчики обеспечивают возможность задания по интерфейсу следующих параметров:

- адреса счетчика (от 1 до 65000);
- заводского номера счетчика (до 30 символов);
- текущего времени и даты;

- величины суточной коррекции часов;
- разрешения перехода на летнее/зимнее время (переход на летнее время осуществляется в 2:00 в последнее воскресенье марта, переход на зимнее время осуществляется в 3:00 в последнее воскресенье октября);
- 48 зон суточного графика тарификации для каждого типа дня для 12 месяцев;
- до 45 специальных дней (дни, в которые тарификация отличается от общего правила);
  - пароля для доступа по интерфейсу (от 0 до 4294967295).

# 1.4.6 Тарифное расписание

Счетчик ведет учет электрической энергии по действующим тарифам (до 4) в соответствии с месячными программами смены тарифных зон (количество месячных программ – до 12, количество тарифных зон в сутках – до 48). Месячная программа может содержать суточные графики тарификации рабочих, субботних, воскресных и специальных дней. Количество специальных дней (праздничные и перенесенные дни) – до 45. Для специальных дней могут быть заданы признаки рабочей, субботней, воскресной или специальной тарифной программы.

Счетчик содержит в энергонезависимой памяти две тарифные программы – действующую и резервную. Резервная тарифная программа вводится в действие с определенной даты, которая передается отдельной командой по интерфейсу.

## 1.4.7 Журналы событий

Счетчик обеспечивает фиксацию в журналах событий перезагрузок, самодиагностики, попыток несанкционированного доступа, переходов на летнее или зимнее время, изменения конфигурации, изменения данных, изменения времени и даты, включений или отключений питания, выходов параметров качества электрической сети за заданные пределы, значений положительного и отрицательного отклонений напряжения, количества отключений встроенного контактора с фиксацией значений силы тока и коэффициента мощности перед отключением.

# 1.4.8 Измерительные элементы

Счетчики имеют в своем составе измерительные элементы – датчики тока (шунты или трансформаторы тока, в зависимости от исполнения).

# 1.4.9 Дискретные входы и дискретные выходы

В состав счетчиков могут входить до четырех отдельных гальванически развязанных от сети дискретных выходов и до четырех отдельных гальванически развязанных от сети дискретных входов.

Конфигурирование функционального назначения выходов счетчиков производится с помощью программы конфигуратора счётчиков. Нагрузочная способность выходов — не более 30 мА постоянного тока, коммутируемое напряжение — не более 24 В постоянного напряжения.

Конфигурирование функционального назначения входа производится с помощью программы конфигуратора счётчиков. Входы допускают подключение внешних устройств с дискретными выходами типа «сухой контакт», «открытый коллектор» или аналогичными.

## 1.5.2 Пломбирование

Конструкция счетчиков для предотвращения доступа к внутренним частям обеспечивает опломбирование корпуса и крышки зажимов счетчиков. Предусматривается 2 уровня опломбирования:

- 1) корпус счетчика пломбой поверителя и завода-изготовителя с оттиском знака поверки (присутствует при выпуске счетчика с предприятия-изготовителя);
- Крышка клеммной колодки пломбой энергоснабжающей (сетевой) организации (устанавливается после монтажа для защиты от несанкционированного вскрытия).

### 2 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Программное обеспечение (ПО) счетчика встроено в постоянное запоминающее устройство (ПЗУ) счетчика и записывается на заводеизготовителе. Для защиты счетчика от несанкционированного вмешательства работу осуществлены конструктивные, программные схемотехнические решения, которые обеспечивают надежную счетчика и данных. ПО аппаратно защищено от записи, что исключает несанкционированной настройки возможность его И приводящих к искажению результатов измерений. Счетчик фиксирует несанкционированного доступа журнале событий: В колодки, корпуса несанкционированном вскрытии крышки клеммной счетчика и попытке перепрограммирования счетчика. Влиянием ПО на метрологические характеристики счетчика можно пренебречь.

Номера версий и цифровые идентификаторы ПО можно получить из счетчика с помощью конфигурационного программного обеспечения.

Идентификационные данные ПО счетчиков представлены в таблице 2.1. Таблица 2.1 – Идентификационные данные ПО счетчиков

| Наименование программного обеспечения               | ST2000-10-C |
|-----------------------------------------------------|-------------|
| Идентификационное наименование программного         | MT6         |
| обеспечения                                         |             |
| Номер версии (идентификационный номер) программного | 1.0         |
| обеспечения                                         |             |
| Цифровой идентификатор программного обеспечения     | FD7C        |
| (контрольная сумма исполняемого кода)               |             |
| Алгоритм вычисления цифрового идентификатора        | CRC         |
| программного обеспечения                            |             |

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует «среднему» уровню по Р 50.2.077-2014.

### 3 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

### 3.1 Эксплуатационные ограничения

Счетчики подключаются к трехфазной четырехпроводной сети переменного тока и предназначены для наружной установки, с рабочими условиями применения:

- температура окружающего воздуха от минус 40 до плюс 70 °C;
- относительная влажность окружающего воздуха до 98%;
- атмосферное давление от 70 до 106,7 кПа;
- диапазон напряжений от  $0.75U_{\text{ном}}$  до  $1.15U_{\text{ном}}$ ;
- частота измерительной сети 50 Гц;
- форма кривой напряжения и тока измерительной сети синусоидальная с коэффициентом несинусоидальности не более 12%

#### 3.2 Подготовка изделия к использованию

## 3.2.1 Меры безопасности при подготовке счетчика

К работам по монтажу, техническому обслуживанию и ремонту счетчика допускаются лица, изучившие эксплуатационную документацию на изделие, прошедшие инструктаж по технике безопасности и имеющие квалификационную группу по электробезопасности не ниже III для электроустановок до 1000 В.

Все работы, связанные с монтажом счетчика, должны производиться при отключенной сети.

При проведении работ по монтажу и обслуживанию счетчика должны соблюдаться:

- Правила устройства электроустановок (ПУЭ);
- Правила по охране труда при эксплуатации электроустановок;
- Правила технической эксплуатации электроустановок потребителей (ПТЭЭП).

Сечение соединительных проводов должно выбираться в соответствии с максимальной токовой нагрузкой фаз счетчика.

# 3.2.2 Распаковывание и осмотр

Извлечь счетчик из транспортной упаковки, и произвести внешний осмотр.

Проверить комплектность поставки согласно формуляру на счетчик, произвести наружный осмотр счетчика, убедиться в отсутствии механических повреждений, наличии и сохранности пломб.

#### 3.2.3 Монтаж и подключение

Установить счетчик на место эксплуатации (габаритные и установочные размеры счетчиков приведены в приложении A).

Подключить счетчик к трехфазной четырехпроводной сети переменного тока по схеме включения, нанесенной на крышке колодки и приведенной в приложении Б.

Не допускается попадание в зажим участка провода с изоляцией, а также выступ за пределы колодки оголенного участка. Сначала затянуть верхний винт, затем нижний. Через 2 – 4 минуты подтянуть соединение еще раз. После подключения убедиться в правильности подключения счетчика и надежности соединения.

Подать напряжение на счетчик. При подключении нагрузки светодиод «XXXX imp/kW·h» и «YYYY imp/kvar·h» (при наличии и в зависимости от характера нагрузки) на лицевой панели счетчика должен мигать (здесь и далее XXXX и YYYY – числа, соответствующие постоянным счетчика по активной и реактивной энергии соответственно, в зависимости от исполнения), значение учтенной электроэнергии должно возрастать.

Убедившись в нормальной работе счетчика, опломбировать счетчик.

### 3.3 Использование изделия

Для считывания показаний счетчиков необходимо использовать внешнее индикаторное устройство. Порядок работы с индикаторным устройством подробно описан в Приложении В.

Для подключения к оптическому испытательному выходному устройству фотосчитывающая головка закрепляется напротив светодиода оптического испытательного выходного устройства (обозначенного «XXXX imp/kW·h», «YYYY imp/kvar·h», в зависимости от исполнения). Дополнительную информацию можно получить из руководства по эксплуатации подключаемого оборудования.

Подключение к дискретным выходам производить по схемам включения, нанесенным на крышке колодки и приведенным в приложении Б.

Информация об опросе и программировании счетчика находится в документации на программу опроса и программирования счетчика.

### 4 ПОВЕРКА ПРИБОРА

Поверка счетчика проводится при выпуске из производства, после ремонта и в эксплуатации в соответствии с документом «Счетчики электрической энергии трехфазные многофункциональные «КВАНТ ST 2000-10». Методика поверки» ВЛСТ 417.00.000 МП

Интервал между поверками – 16 лет.

#### 5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- Техническое обслуживание счетчика в местах установки заключается в систематическом наблюдении за его работой.
- 5.2 Периодическая поверка счетчика проводится в объеме, изложенном в разделе 4 настоящего руководства, через период времени равный интервалу между поверками, либо после замены встроенного резервного источника питания или среднего ремонта.
- 5.3 При отрицательных результатах поверки ремонт и регулировка счетчика осуществляются организацией, уполномоченной ремонтировать счетчик. Последующая поверка производится в соответствии с п. 5.2.

#### 6 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1 Счетчик должен транспортироваться в упаковке завода-изготовителя. Во время транспортирования должны соблюдаться следующие условия:

температура окружающей среды: от минус 50 до + 70 °C, относительная влажность воздуха при  $25^{\circ}$  C до 98%; атмосферное давление от 70 до  $106.7 \text{ к}\Pi a$ .

транспортные тряски с максимальным ускорением:  $30 \text{ м/c}^2$ ; при частоте: от 80 до 120 ударов в минуту.

Счётчики должны транспортироваться в крытых железнодорожных вагонах, перевозиться автомобильным транспортом с защитой от дождя и снега, водным транспортом, а также транспортироваться в герметизированных отапливаемых отсеках самолетов.

Транспортирование должно осуществляться в соответствии с правилами перевозок, действующими на каждый вид транспорта.

6.2 Счетчик должен храниться в отапливаемом помещении в упаковке завода-изготовителя в соответствии с  $\Gamma$ OCT 22261-94 при температуре воздуха от 5 до 40 °C и относительной влажности воздуха при 25° C: не более 80%.

Распаковку счетчиков, находившихся при температуре ниже 0 °С, необходимо производить в отапливаемом помещении, предварительно выдержав их в не распакованном виде в нормальных климатических условиях в течение 24 ч. Размещение упакованных счетчиков вблизи источников тепла запрещается.

Расстояния между стенами, полом помещения и упакованным счетчиком должно быть не менее 0,1 м. Хранить упакованные счетчики на земляном полу не допускается. Расстояние между отопительными приборами помещения и упакованным счетчиком должно быть не менее 0,5 м.

#### ПРИЛОЖЕНИЕ А

Внешний вид и размеры счетчика в исполнении С и индикаторного устройства

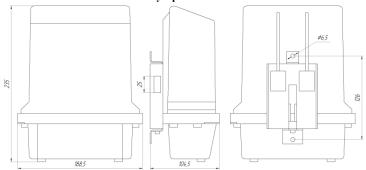



Рисунок А.1 - Размеры счетчика в исполнении С

**Примечание:** Конструкция кронштейна предусматривает возможность крепления как с помощью монтажной ленты, так и с помощью винтов. Конструктивно кронштейн может отличаться от изображенного на рисунке.

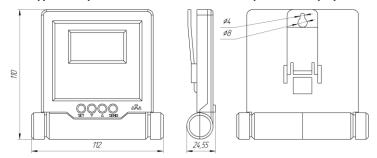



Рисунок А.2 - Размеры индикаторного устройства

## ПРИЛОЖЕНИЕ Б Схемы подключения счетчиков в исполнениях С

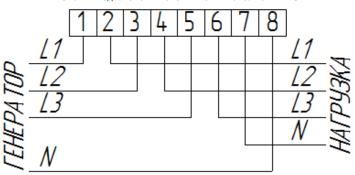



Рисунок Б.1 - Схема подключения счетчика непосредственного включения в исполнении С (ST2000-10-C-230\*10(100)-1/1-PBZ)

#### приложение в

## Описание и настройка индикаторного устройства

### В.1 Описание и работа

Индикаторное устройство способно отображать информацию счетчиков со встроенным радио-интерфейсом.

Основной принцип работы индикаторного устройства заключается в отображении информации счетчика, к которому оно привязано. В данной версии индикаторного устройства, с учетом конфигурации индикации счетчика, отображается следующая информация:

- Алрес счетчика:
- Заводской номер счетчика;
- Дата и Время;
- Показания счетчика по тарифам и видам энергии;
- Дополнительные параметры сети.

Питается индикаторное устройство с помощью двух батареек типа «АА».

Управление индикаторным устройством осуществляется с помощью четырех кнопок: «SET», «▼», «▲» и «SEND» (см. п. В.4).

Конструкцией индикаторного устройства предусмотрено крепление на стену, а также подставка для установки на стол.

## В.2 Режимы работы

Индикаторное устройство имеет два режима работы: отображение показаний (ручной с помощью кнопок) и энергосбережение (автоматический).

В.2.1. Отображение показаний (см. Рисунок В.1)



Рисунок В.1 - Цикл индикации показаний в режиме отображения показаний



Рисунок В.2 - Цикл индикации дополнительных параметров

Основная задача индикаторного устройства — это отображение показаний привязанного счетчика электроэнергии.

В режиме отображение показаний, с учетом конфигурации индикации счетчика, возможен просмотр следующей информации:

- Время и дата считываются при каждом опросе счетчика и отображаются на индикаторе устройства, в связи с этим внутренние время и дата индикаторного устройства полностью зависят от времени и даты счетчика.
- Количество показаний и видов энергии зависит от типа счетчика и конфигурации режимов индикации счетчика. Соответственно могут отображаться: активная прямая, активная обратная, активная абсолютная, реактивная прямая, реактивная обратная абсолютная энергии.
- К дополнительным параметрам счетчика относятся: частота, ток, напряжение, активная мощность и реактивная мощность. Количество и тип дополнительного параметра зависит от типа счетчика.

**Примечание:** Цикл индикации дополнительных параметров счетчика зависит от его типа и количества измеряемых значений.

В.2.2 Режим энергосбережения (см. Рисунок В.3)



Рисунок В.3 - Цикл индикации в режиме энергосбережения

Режим энергосбережения индикаторного устройства представляет собой режим низкого потребления питания батареи с автоматическим отображением по циклу адреса, времени и даты счетчика.

При отсутствии воздействий на кнопки управления индикаторное устройство автоматически перейдет в режим энергосбережения вне зависимости от предыдущего режима работы.

Индикаторное устройство оценивает заряд батареи, и в случае низкого заряда батареи отобразит значок низкого заряда батареи .

В.2.3 Дополнительные значки

- Состояние реле (при наличии) - замкнуто, - разомкнуто;
- «О» индикация времени;
- знаки \*\* отображаются согласно установленного тарифного расписания счетчика: \*\* рабочий день, \*\* воскресный день, \*\* субботний день, мигающие \*\*\* специальный день;
  - «б» и «б» указатели вскрытия пломб клемной крышки и корпуса;

# В.З Настройка адреса

На рисунке В.4 показан вид экрана при настройке адреса счетчика. Значения адреса счетчика находятся в диапазоне от «00001» до «65534».



Рисунок В.4 - Настройка адреса

### В.4 Управление

В.4.1 Управление в режиме отображения показаний.

Для управления индикаторным устройством предусмотрено 4-е кнопки: «SET», « $\P$ », « $\clubsuit$ » и «SEND» (см. рисунок В.5).



Рисунок В.5 - Кнопки управления

В режиме отображения информации кнопки выполняют следующие функции:

- «▼» и «▲» выполняют функцию переключателя между циклом индикации показаний (см. рисунок В.1), циклом индикации дополнительных параметров (см. рисунок В.2) и дополнительной страницей индикации реле в случае включенной функции «Включать реле только после подтверждения кнопкой».
- «SET» выполняет функцию переключателя отображаемой страницы на следующую по циклам индикации показаний и дополнительных параметров. Переключение отображаемой страницы не происходит автоматически и возможно только в ручном режиме.
  - «SEND» выполняет функцию запуска процедуры опроса счетчика.
  - В.4.2 Управление в меню настройки адреса.
- 1) С помощью комбинации кнопок «SET» + «SEND», можно переместиться в дополнительное меню настройки адреса.
- 2) Для изменения адреса прибора необходимо нажать кнопку «Set». После чего появится мигающий курсор изменения соответствующего значения. Изменение значения производится нажатием кнопок «▼» и «▲», а перемещение курсора кнопками «SET» и «SEND», влево и вправо соответственно.
- Для сохранения выбранного параметра необходимо нажать комбинацию кнопок «SET» + «SEND».
- 4) Для выхода из меню настройки необходимо завершить все изменения, и нажать на кнопку «SEND». После чего начнется процедура опроса счетчика.
  - В.4.3 Управление в режиме энергосбережение.

Выходом из режима энергосбережения служит нажатие на любую кнопку управления, после чего он начинает процедуру опроса счетчика.