На главную
Лауреаты рейтинга IT-компаний «РИА Рейтинг»
Лауреаты рейтинга
IT-компаний
«РИА Рейтинг»
Лауреаты рейтинга РИА «РБК»
Лауреаты рейтинга
РИА «РБК»
Лауреаты премии «Профессиональное признание — 2013»
Лауреаты премии
«Профессиональное
признание — 2013»
Лауреаты премии «Профессиональное признание — 2011»
Лауреаты премии
«Профессиональное
признание — 2011»
ТОП-1000 КОМПАНИЙ-ПОСТАВЩИКОВ
ТОП-1000
КОМПАНИЙ-ПОСТАВЩИКОВ

Публикации



Концепция «электроэнергия — товар» как катализатор развития Smart Grid

Статья в PDF (1,3 МБ)

Представлен российский проект по установке интеллектуальных счетчиков, стартовавших в г. Перми на базе филиала ОАО «МРСК Урала» — «Пермьэнерго» в 2011 г. Отмечается, что в России активно реализуются и другие проекты построения систем учета на розничном рынке. При этом требования к приборам учета и к системам в этих проектах далеко не всегда пересекаются, что говорит об отсутствии единой концепции в области Smart metering. Показано, что способствовать активизации внедрения инноваций в области энергетики может развитие рассмотрения электроэнергии в качестве товара.

В отечественном определении Smart Grid наблюдается одна интересная особенность. Собственно сам термин Smart Grid относят к распределительному сетевому комплексу (зона деятельности в большей степени ОАО «Холдинг МРСК» и ТСО) и базисом этого понятия является Smart metering (по сути это есть отправная точки для ОАО «Холдинг МРСК» в строительстве «умных сетей»). Та же «умная сеть» на более высоких классах напряжения – 220 кВ и выше – в определениях ОАО «ФСК» является активно-адаптивной сетью, где ведущую роль отводят интеллектуальным силовым элементам сети. Рассмотрим Smart Grid как концепцию интеллектуальной, эффективной, надежной, клиенториентрованной энергетики, включающую генерацию, транспорт, распределение и потребление.

В настоящее время в мире активно разрабатываются, проходят опробование и внедряются отдельные технологии «умных сетей». Европа, США, Китай и другие страны вкладывают миллиарды долларов и евро в развитие интеллектуальной энергетики, обозначая в качестве ориентира сокращение выбросов углекислого газа, повышение надежности энергоснабжения, появление новых высокотехнологичных производств и рабочих мест.

В России также разрабатываются инициативы в области Smart Grid. И как следует из разности подходов в определении данного понятия, основными драйверами Smart Grid являются ОАО «ФСК ЕЭС» и ОАО «Холдинг МРСК».

Одни из российских проектов, заслуживающих внимания, является проект по установке интеллектуальных счетчиков, стартовавших в г. Перми на базе филиала ОАО «МРСК Урала» – «Пермьэнерго» в 2011 г. Целью данного проекта является отработка механизмов внедрения и функционирования технологии Smart metering с последующей трансляцией опыта по всей стране. Конечные цели внедрения технологии Smart metering представлены в таблице.

ГосударствоГенерацияСетиСбытПотребитель
  1. Снижение энергопотребления (20%);
  2. Прозрачность структуры энергопотребления.
  1. Снижение объема новых мощностей (20%);
  2. Сглаживание пиковых нагрузок.
  1. Снижение потерь (50%);
  2. Сглаживание пиков;
  3. Снижение операционных затрат (10%).
  1. Улучшение оборачиваемости задолженности (30%);
  2. Уменьшение числа обращений потребителей (30%).
  1. Более высокий уровень удовлетворенности качеством энергоснабжения;
  2. Управление своим энергопотреблением (расходами).

Достижение этих целей планируется за счет следующих характеристик системы учета энергоресурсов, построенной на базе технологии Smart metering:

  • интервальный учет мощности (30…60 мин с возможностью установки произвольного периода интеграции мощности);
  • отслеживание превышения лимитов нагрузки потребителей;
  • измерение параметров качества электроэнергии (значение напряжения, частота, длительность провала напряжения, глубина провала напряжения, длительность перенапряжения);
  • активное использование связи с приборами учета по силовой линии (ПЛК);
  • минимальный период опроса приборов учета (общедомовых, предприятий) – 15 мин;
  • удаленное (централизованное) управление приборами учета, в частности, ограничение/отключение;
  • предоставление данных пользователю через Web-интерфейс (включая просмотр данных через мобильные устройства).

Пример целевой архитектуры системы учета энергоресурсов на основе технологии Smart metering представлен на рисунке.

Структура системы учета энергоресурсов на основе технологии Smart Grid
Структура системы учета энергоресурсов на основе технологии Smart Grid

В качестве основных технологических подсистем представленной архитектуры выделим следующие:

  • AMI – (Advanced Metering Infrastructure) модуль обеспечения интеграции данных учета из разнородных приборов учета;
  • MDM – (Metering Data Management) модуль обработки данных учета;
  • OMS – (Outage Management System) подсистема управления сбоями в электроснабжении;
  • DMS – (Distribution Management System) подсистема управления распределительной сетью;
  • SCADA – (Supervisory Control and Data Acquisition System) система консолидации и отображения данных учета и мониторинга.

Подобная архитектура часто фигурирует в иностранных информационных источниках как основа построения масштабных и в то же время гибких систем Smart metering. В частности, гибкость достигается за счет использования унифицированной технологической интеграционной шины, работающей по принципу publisher/subscriber (в качестве аналогии можно привести подписку на новостные rss-каналы). Не уходя в подробности, можно сказать, что построенные по таким принципам системы вполне отвечают принципам открытости, функциональной полноты и клиенториентированности.

Несмотря на понятные цели и доступные ориентиры, пермский проект Smart metering не отрабатывает ряд принципиальных особенностей:

  • возможность двухсторонней циркуляции электроэнергии – когда потребитель время от времени становится поставщиком электроэнергии;
  • функционирование таких «островков» сети, как Microgrids с возможностью включения/отключения от основной сети в определенные промежутки времени;
  • учет не только электроэнергии, но и остальных энергоресурсов (хотя данные цели заявлены);
  • механизм взаимодействия с пассивными по отношению к Интернет потребителями (пенсионеры и т. д.);
  • включение в систему произвольных цифровых счетчиков, устанавливаемых потребителями (в проекте используется лишь пять типов счетчиков – излишне говорить, что на отечественном рынке представлено значительно больше типов приборов учета).

Надо отметить, что наряду с проектом «умного учета» в г. Перми в России активно реализуются и другие проекты построения систем учета на розничном рынке. При этом требования к приборам учета и к системам в целом далеко не всегда пересекаются с аналогичными по пермскому проекту. Стоимости же внедрения подобных проектов – десятки, сотни тысяч, а иногда и миллиарды рублей.

Подобная несинхронность и отсутствие единой концепции построения такой значимой части «умных сетей», как Smart metering ставит под сомнение достижение целей экономии и повышения эффективности производства, транспорта, распределения и потребления электроэнергии, обозначенных в таблице. Несогласованность в действиях и туманность целей порождает волну скепсиса к технологии Smart metering и концепции Smart Grid в целом.

Износ текущего оборудования электрических сетей составляет порядка 60 %. Для решения многих проблем, связанных со сбоями в электроснабжении, вполне достаточно обновить текущую техническую базу электроэнергетики (генераторы, трансформаторы, электродвигатели и т. д.) и внедрить ряд новых методов, например, таких как система плавки гололеда. При этом нет острой необходимости воплощать в жизнь многомиллиардные проекты на основе инновационных (не редко «сырых») технологий с сомнительными преимуществами по сравнению с «классическими».

Возможно ли преодолеть подобные негативные посылы в направлении Smart Grid? Что может способствовать активизации внедрения инноваций в области энергетики?

Объектом воздействия в концепции Smart Grid является электроэнергия. От придания статуса данному объекту, то есть электроэнергии зависит дальнейшее развитие концепции интеллектуальной энергетики вообще. Среди прочих возможных определений электроэнергии можно представить такие:

  • электроэнергия – это товар (продукт);
  • электроэнергия – это одно из составляющих конечного продукта/услуги (свет, тепло, связь и т. п.).

Выбор той или иной концепции определяет ценностную составляющую электроэнергии как предмета товарно-рыночных отношений, а также возможные варианты развития данных отношений и технологий, поддерживающих эти отношения.

Если рассматривать электроэнергию как товар, которым можно торговать (что сейчас активно и происходит, правда с некоторыми оговорками и ограничениями), то вполне закономерно развитие и технологий торговли (биржевая торговля, фьючерсы, опционы, страховой рынок и т. п.), и технологий обеспечения производства и потребления данного товара (в нашем случае Smart Grid) во всем их разнообразии. В этом случае ситуация, когда группа людей объединится в некий кооператив, купит, например, ветрогенератор, будет обеспечивать себя электроэнергией и продавать излишки через сбыт или биржу вовне – выглядит вполне реально и привлекательно. Конечно, без подготовки технологической (стоимость ветрогенератора, технология взаимодействия Microgrid с центральной сетью и т. д.) и организационной (правила розничного рынка, развитость сбытовой деятельности, государственная поддержка и т. д.) инфраструктуры реализовать даже такой относительно простой пример едва ли удастся.

С другой стороны, электроэнергия не является конечной целью для потребителя. Потребителю интересны освещение, тепло, работы электоаппаратуры и т. д. Покупая, например, телефон, потребитель ценит конечный товар, то есть телефон. Безусловно, важно качество материалов, из которых сделан товар. Поэтому потребитель осознает, что материал, из которого сделан экран телефона, участвует в ценообразовании, и качество этого материала – немаловажный аспект. Но конечную роль играет сам товар в целом, со всем комплексом потребительских свойств. Подобные механизмы могут вполне транслироваться и на электроэнергию, когда конечному потребителю продается не количество кВт·ч, а свет, тепло, возможность слушать музыку, пользоваться кондиционером и пр. Элементы этих механизмов прослеживаются уже сейчас: ограничение нагрузки не лишает потребителя возможности использовать электроэнергию вообще, но ограничивает его возможности в части этого использования (свет гореть будет, а вот обогреватель или чайник уже не заработают).

И в том, и в другом случае надежность и эффективность работы энергосистем и ключевая роль оперативно-диспетчерского управления не оспариваются. Тем не менее, первый вариант определения электроэнергии дает несколько больше стимулов для развития Smart Grid.

И, к сожалению, рост цен на электроэнергию неизбежен при любом сценарии. По мнению отдельных авторитетных представителей профессионального сообщества, цена на электроэнергию должна повыситься в 5…6 раз. Решение вопроса с износом основного оборудования и тем более развитие интеллектуальной составляющей энергосистем требует внушительных вложений. В любом случае часть этих затрат будет транслирована на потребителя, что влечет за собой рост ценности товара – электроэнергии.

При принятии концепции «электроэнергия – товар» к ключевым аспектам развития концепции Smart Grid можно отнести:

  1. учет электроэнергии. Как и в любых товарно-денежных отношениях учет товара от стадии производства до стадии потребления (использования и утилизации). При этом будет учитываться количество, качество, характер происхождения (кто производитель, насколько экологично производство и т. п.);
  2. хранение электроэнергии. Большинство товаров от стадии производства до стадии потребления проходят этапы хранения. Электроэнергия в этом плане исключение: генерация и потребления в общем случае должны быть синхронными процессами. С развитием ВИЭ, Microgrids, EV (элеткромобили) и т. п. мы непременно придем к хранению электроэнергии в промышленных масштабах. Тренд очевиден уже сейчас. Безусловно, это станет стимулом к развитию новых технологий накопителей электричества большой емкости;
  3. надежная, гибкая высокоскоростная связь между потребителем и поставщиком;
  4. широкий спектр сырья для производства электроэнергии, а также методов производства. Для устойчивого развития рыночных отношений и возможности формирования более гибких предложений как по цене, так и по характеру поставщикам электроэнергии должны быть доступны широкие возможности по использованию источников генерации. Сосредоточение только на углеродном сырье или атомной энергетике накладывает существенные ограничения;
  5. надежная поставка электроэнергии. К этому вопросу относится весь спектр технологических решений (силовое оборудование, средства автоматизации и т. п.), способствующих надежной гарантированной поставке товара – электроэнергии. При этом уровень надежности поставки тоже может быть оценен и предложен в качестве дополнительной опции;
  6. развитая инфраструктура, сервисы:
    • продажа, сбыт (биржа, финансовые инструменты…);
    • страхование, например, от сбоев в электроснабжении или плохого качества электроэнергии. В настоящее время, по крайней мере, в России довольно трудно получить (в ряде случаев невозможно) компенсацию ущерба в связи с отключениями или некачественной электроэнергией;
    • обслуживание.

    Таким образом, указанный вектор развития технологий интеллектуальной энергетики достаточно полно отражает имеющиеся в настоящее время в мире инициативы. Конечно, это один из возможных вариантов. Все построение Smart Grid может ограничиться неким эволюционным развитием текущих технологий с неизбежной «инъекцией» безопасной части инноваций при сохранении консервативного вектора отношений на рынке электроэнергии. Однако мир прекрасен в его разнообразии, и если человечеству представляется возможность построить систему вокруг некоего ценностного ориентира (есть мнение, что изобретение вечного двигателя на воде обречено – нефтяной бизнес не допустит этого), то эта возможность будет непременно использована. Будем надеяться, что во благо.

    Ледин С.
    Автоматизация в промышленности. №4, 2012

    Читайте также
    1. Ледин С. Интеллектуальные сети Smart Grid — будущее российской энергетики // Автоматизация и IT в энергетике. № 11 (16), 11.2010
    2. Экономическая эффективность внедрения АИИС КУЭ // sicon.ru